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Abstract: 
This study presents a comparative numerical investigation of two prominent techniques used to solve second-order elliptic 

partial differential equations (PDEs): the Second Order Central Difference Method (SCDM) and the Finite Element Method 

(FEM). Both approaches are applied to a rectangular domain under Dirichlet and Neumann boundary conditions, with the 

goal of evaluating their accuracy, error behavior, and computational efficiency. While SCDM utilizes a uniform Cartesian 

grid and approximates derivatives using finite difference formulas, FEM adopts a variational formulation with linear 

Lagrange triangular elements and applies Gauss quadrature for integration. To validate the performance of each method, 

hypothetical PDEs with known exact solutions are solved, and errors are calculated in both absolute and relative terms using 

L₂ norms. A unified table summarizes the comparative results across three illustrative examples, and corresponding plots 

visualize error variations with respect to spatial steps. The study confirms that while SCDM offers simpler implementation 

and relatively stable performance on regular domains, FEM provides superior accuracy for cases with complex boundary 

conditions and varying solution gradients. This investigation emphasizes that method selection should be guided by the 

nature of the problem, desired accuracy, and boundary complexity. The results also pave the way for future research 

involving higher-order schemes and irregular geometries. 
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INTRODUCTION 

Finite Difference techniques and Finite Element techniques are widely used to solve partial differential equations. Finite 

Element Methods take longer than finite difference methods and are mainly used when the boundaries are not straight. When 

the borders are not straight, it is hard to use finite difference methods to get derivatives. Finite Element methods are also 

harder to utilize than Finite Difference schemes because they use a wider range of numerical techniques, such as 

interpolation, numerical integration, and ways to solve large linear systems. The mathematical basis for Finite Element 

Methods comes from “Hilbert Spaces, Sobolev Spaces, variational principles, and the weighted residual approach’’. 
 

This article explains the Second Order Central Difference Scheme and the Finite Element Method for solving general second 

order elliptic partial differential equations with regular boundary conditions on a rectangular domain. We also look at the 

Dirichlet and Neumann boundary conditions along the four edges of the rectangular domain for both methods. We also 

undertake a short error analysis for the Finite Element Method. We also find two more important numerical methods that 

are needed to run the algorithm for the finite element approach. 
 

Some of these methods are bilinear interpolation with a linear Lagrange element, Gauss quadrature, and contour Gauss 

quadrature applied to a triangular area. In addition, these two methods lead to a linear system that needs to be solved. This 

study uses the Gauss-Seidel method to solve the outcome systems, which is briefly explained. In the latter part of our 

numerical investigation. We use these methods on certain elliptical problems to see which ones give better approximations 

when Dirichlet and Neumann boundary conditions are used. The study's results show that the accuracy of these two methods 

depends on the type of elliptical problem and the type of boundary conditions. 
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OBJECTIVE 

To compare the accuracy and effectiveness of the Second Order Central Difference Method and Finite Element Method in 

solving elliptic PDEs under Dirichlet and Neumann boundary conditions. 

Second Order Central Difference Scheme 

The second order general linear elliptic PDE of two variables 𝑥 and 𝑦 given as follow: 

 

𝜕2𝑢 𝜕2𝑢 𝜕2𝑢 𝜕𝑢 𝜕𝑢 

𝑝 
𝜕𝑥2 + 𝑠 

𝜕𝑥𝜕𝑦 
+ 𝑞 

𝜕𝑦2 + 𝑏1 𝜕𝑥 
+ 𝑏2 𝜕𝑦 

+ 𝑟𝑢 = 𝑓 … . . (1.1) 

with 𝑢 defined on a rectangular domain Ω = [𝑎, 𝑏] × [𝑐, 𝑑] ⊂ ℝ2, it holds 𝑠2 − 4𝑝𝑞 < 0. Also 

𝑝, 𝑞, 𝑠, 𝑏1, 𝑏2, 𝑟, 𝑓 ∈ 𝐶1(Ω) and 𝑢 ∈ 𝐶(Ω) ∩ 𝐶2(Ω) 

 
Moreover in this paper two types of boundary conditions are considered: 

 

 

𝑢(𝑥, 𝑦) = 𝑔(𝑥, 𝑦) on Γ1 (Dirichlet Boundary Conditions). 

 

𝛛𝑢 = 𝑔 (𝑥) on Γ 
 

(Neumann Boundary Conditions). 

𝛛𝑛 1 2 

 
The boundary 𝜕Ω = Γ1 ∪ Γ2 and n is the normal vector along the boundaries. 

 

 

We divide the rectangular domain Ω in a uniform Cartesian grid 

(𝑥𝑖, 𝑦𝑗) = ((𝑖 − 1)ℎ, (𝑗 − 1)𝑘): 𝑖 = 1,2, ⋯ , 𝑁, 𝑗 = 1,2, ⋯ , 𝑀 

where 𝑁, 𝑀 are the numbers of grid points in 𝑥 and 𝑦 directions and 

𝑏 
ℎ = 

𝑁 − 1 

 
and 𝑘 = 

𝑑 
− 1 

𝑀 − 1 

are the corresponding step sizes along the axes 𝑥 and 𝑦. The discretize domain are shown in Figure 1.1 
 

Figure 1. Discrete domain 
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⋮ 

 

Using now the central difference approximation we can approximate the partial derivatives of the relation (1) as follows: 

𝜕2𝑢 

𝜕𝑥2
= 

𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗 

ℎ2 

 
+ 𝑂(ℎ2) … . (1.2) 

𝜕2𝑢 
= 

𝜕𝑥𝜕𝑦 
𝜕2𝑢 

𝜕𝑦2
= 

𝑢𝑖+1,𝑗+1 − 𝑢𝑖−1,𝑗+1 − 𝑢𝑖+1,𝑗−1 + 𝑢𝑖−1,𝑗−1 

4ℎ𝑘 
𝑢𝑖,𝑗+1 − 2𝑢𝑖,𝑗 + 𝑢𝑖,𝑗−1 

+ 𝑂(𝑘2) … . (1.4) 
𝑘2 

+ 𝑂(𝑘2 + ℎ2) … . (1.3) 

𝜕𝑢 
= 

𝑢𝑖+1,𝑗 − 𝑢𝑖−1,𝑗 
+ 𝑂(ℎ2) … . (1.5) 

𝜕𝑥 2ℎ 
𝜕𝑢 

= 
𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗−1 

+ 𝑂(𝑘2) … . (1.6) 
𝜕𝑦 2𝑘 

 
where 𝑂(ℎ2), 𝑂(𝑘2) and 𝑂(𝑘2 + ℎ2) are the truncation errors. 

We now approximate the PDE (1.1) using the relations (1.2), (1.3), (1.4), (1.5), (1.6) and we obtain the second order 

central difference scheme: 

4[ℎ2𝑘2𝑟𝑖,𝑗 − 2𝑘2𝑝𝑖,𝑗 − 2ℎ2𝑞𝑖,𝑗]𝑢𝑖,𝑗 + 2𝑘2[2𝑝𝑖,𝑗 + 𝑏1𝑖,𝑗ℎ]𝑢𝑖+1,𝑗 + 2𝑘2[2𝑝𝑖,𝑗 − 𝑏1𝑖,𝑗ℎ]𝑢𝑖−1,𝑗 

+2ℎ2[2𝑞𝑖,𝑗 + 𝑏2𝑖,𝑗𝑘]𝑢𝑖,𝑗+1 + 2ℎ2[2𝑞𝑖,𝑗 − 𝑏2𝑖,𝑗𝑘]𝑢𝑖,𝑗−1 + 𝑠𝑖,𝑗ℎ𝑘(𝑢𝑖+1,𝑗+1 − 𝑢𝑖−1,𝑗+1 − 𝑢𝑖+1,𝑗−1 + 𝑢𝑖−1,𝑗−1) = 4ℎ2𝑘2𝑓𝑖,𝑗 

… . (1.7) 

With truncation error 𝑂(𝑘2 + ℎ2). 

The relation (1.7) can be written as a linear system: 

𝐴𝑢 = 𝑏 … . (1.8) 

Dirichlet Boundary Conditions 

The dimensions of the above linear system depends on the boundary conditions. More specific, if we have the Dirichlet 

Boundary Conditions: 

𝑢0,𝑗 = 𝑔(𝑎, 𝑦𝑗)𝑢𝑁,𝑗 = 𝑔(𝑎, 𝑦𝑗) for each 𝑗 = 0,1, ⋯ , 𝑀 

𝑢𝑖,0 = 𝑔(𝑥𝑖, 𝑐)𝑢𝑖,𝑀 = 𝑔(𝑥𝑖, 𝑑) for each 𝑖 = 0,1, ⋯ , 𝑁 

 
then the dimensions of the matrix 𝐴, 𝑢 and 𝑏 are: (𝑁 − 1)(𝑀 − 1) × 1 for the vectors 𝑢, 𝑏 and 

(𝑁 − 1)(𝑀 − 1) × (𝑁 − 1)(𝑀 − 1) 

for the matrix 𝐴. Moreover, the form of matrix 𝐴 and the vector 𝑢 are given by: 

 

⎡
𝐵1 

⎤ 
𝐺2 

⎢ 
𝑂 

⎥ 
⎢ ⎥ 
⎢ ⎥ 

𝐴 = ⎢ ⋮ ⎥ 
⎢ ⋮ ⎥ 
⎢ 𝑂 ⎥ 
⎢ 𝑂 𝑂 𝑂 𝑂 ⋯ ⋯ 𝐶𝑀−2 𝐵𝑀−2 𝐷𝑀−2⎥ 

[ 𝑂 𝑂 𝑂 𝑂 ⋯ ⋯ 𝑂 𝐺𝑀−1 𝐵𝑀−1] 

and 

𝒖 = [𝑢1,1, 𝑢2,1, 𝑢3,1, ⋯ , 𝑢𝑁−1,1, 𝑢1,2, 𝑢2,2, 𝑢3,2, ⋯ , 𝑢𝑁−1,2, ⋯ , 𝑢1,𝑀−1, ⋯ , 𝑢𝑁−1,𝑀−1] 

As we can see the matrix 𝐴 is tri-diagonal block Matrix. These block matrices 

𝐷1 𝑂 𝑂 𝑂 ⋯ 𝑂 𝑂 𝑂 

𝐵2 𝐷2 𝑂 𝑂 ⋯ 𝑂 𝑂 𝑂 

𝐺3 𝐵3 𝐷3 𝑂 ⋯ 𝑂 𝑂 𝑂 
⋮ ⋮ ⋱ ⋱ ⋱ ⋮ ⋮ ⋮ 
⋮ ⋮ ⋱ ⋱ ⋱ ⋮ ⋮ ⋮ 
⋮ ⋮ ⋮ ⋱ ⋱ ⋱ ⋮ ⋮ 
𝑂 𝑂 𝑂 ⋯ 𝐶𝑀−3 𝐵𝑀−2 𝐷𝑀−3 𝑂 
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st 

th 

⎢ 

 

 

𝐵𝑘, 𝑘 = 1,2, ⋯ , 𝑀 − 1; 𝐺𝑙, 𝑙 = 2,3, ⋯ , 𝑀 − 1; 𝐷𝑚, 𝑚 = 1,2, ⋯ , 𝑀 − 2 

are tri-diagonal as well of order (𝑁 − 1)(𝑁 − 1) 

Neumann Boundary Conditions 

𝜕𝑢 

𝜕𝑦 
(𝑥, 𝑑) = 𝑔1(𝑥) 

𝜕𝑢 

𝜕𝑥 
(𝑏, 𝑦) = 𝑔2(𝑦) 

𝜕𝑢 

𝜕𝑦 
(𝑥, 𝑐) = 𝑔3(𝑥) 

𝜕𝑢 

𝜕𝑥 
(𝑎, 𝑦) = 𝑔4(𝑦) 

We approximate the Neumann boundary conditions in every side of the rectangular domain as follows 

1 side (North side of the rectangular area) 

𝜕𝑢 𝑢𝑖,𝑀+1 − 𝑢𝑖,𝑀−1 (𝑥, 𝑑) = 𝑔 (𝑥) ⇒ = 𝑔 
 

⇒ 𝑢 
 

= 𝑢 
 

+ 2𝑘𝑔 
 

for 𝑗 = 𝑀, 𝑖 = 1,2, ⋯ , 𝑁 − 1 … . (1.9) 

 

𝜕𝑦 1 2𝑘 1𝑖 𝑖,𝑀+1 𝑖,𝑀−1 1𝑖 

𝟐nd side (East side of the rectangular area) 

𝜕𝑢 𝑢𝑁+1,𝑗 − 𝑢𝑁−1,𝑗 (𝑏, 𝑦) = 𝑔 (𝑦) ⇒ = 𝑔 
  

 
⇒ 𝑢 

 
= 𝑢 

 
+ 2ℎ𝑔 

 
for 𝑗 = 1,2, ⋯ , 𝑀 − 1, 𝑖 = 𝑁 … . (1.10) 

𝜕𝑥 2 2ℎ 2𝑗 𝑁+1,𝑗 𝑁−1,𝑗 2𝑗 

𝟑rd side (South side of the rectangular area) 

𝜕𝑢 𝑢𝑖,1 − 𝑢𝑖,−1 (𝑥, 𝑐) = 𝑔 (𝑥) ⇒ = 𝑔 
  

 
⇒ 𝑢 

 
= 𝑢 

 
− 2𝑘𝑔 

 
for 𝑗 = 0, 𝑖 = 1,2, ⋯ , 𝑁 − 1 … . (1.11) 

𝜕𝑦 3 2𝑘 3𝑖 𝑖,−1 𝑖,1 3𝑖 

4  side (West side of the rectangular area) 

𝜕𝑢 𝑢1,𝑗 − 𝑢−1,𝑗 (𝑎, 𝑦) = 𝑔 (𝑦) ⇒ = 𝑔 
 

⇒ 𝑢 
 

= 𝑢 
 

− 2ℎ𝑔 
 

for 𝑗 = 1,2, ⋯ , 𝑀 − 1, 𝑖 = 0 … . (1.12) 

 

𝜕𝑥 4 
 

2ℎ 4𝑗 −1,𝑗 1,𝑗 4𝑗 

Using the relations (1.9), (1.10), (1.11), (1.12) the values 𝑢𝑖,𝑀+1, 𝑢𝑁+1,𝑗, 𝑢𝑖,−1 and 𝑢−1,𝑗 which lies outside the rectangular 

domain can be eliminated when appeared in the linear system. 

Thus the block tri-diagonal matrix 𝐴 has dimensions (𝑁 + 1)(𝑀 + 1) × (𝑁 + 1)(𝑀 + 1) and the vectors 𝑢, 𝑏 are of 

(𝑁 + 1)(𝑀 + 1) × 1 order. The matrix 𝐴 and the vector 𝑢 are given below: 

𝐵0 𝐿0 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 
⎡𝐶1 
⎢ 

𝑂 
⎢ 

𝑂 

⎤ 
⎥ 
⎥ 

3 3 3 ⎥ 
⎥ 
⎥ 
⎥ 

⎢ 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝐶𝑀−1 𝐾𝑀−1 𝐷𝑀−1⎥ 

[ 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝐿𝑀 𝐵𝑀 ] 

and 

𝒖 = [𝑢0,0, 𝑢1,0, 𝑢2,0, ⋯ , 𝑢𝑁,0, 𝑢0,1, 𝑢1,1, 𝑢2,1, ⋯ , 𝑢𝑁,1, ⋯ , 𝑢0,𝑀, ⋯ , 𝑢𝑁−1,𝑀, 𝑢𝑁,𝑀] 

where 𝐵𝑙, 𝐿𝑙, 𝑙 = 0, 𝑀 and 𝐶𝑘, 𝐾𝑘, 𝐷𝑘, 𝑘 = 1,2, ⋯ , 𝑀 − 1 are tri-diagonal matrices with dimensions (𝑀 + 1)2. 

In order to solve the linear system (1.8), we use the Gauss-Seidel method (GSM)[4] An important property that the matrix 

A must have is to be strictly diagonally dominant in order the GCM to converge. 

 

Theorem 1 

𝐴 = ⎢ ⋮ 

⎢ ⋮ 
⋮ 
⋮ 

⋮ 
⋮ 

⋱ 
⋮ 

⋱ 
⋱ 

⋱ 
⋱ 

⋮ 
⋱ 

⋮ 
⋮ 

⋮ 
⋮ 

⎢ 𝑂 𝑂 𝑂 𝑂 𝑂 𝐶𝑀−2 𝐾𝑀−2 𝐷𝑀−2 𝑂 

 

𝐾1 𝐷1 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 

𝐶2 𝐾2 𝐷2 𝑂 𝑂 𝑂 𝑂 𝑂 
𝑂 𝐶 𝐾 𝐷 𝑂 𝑂 𝑂 𝑂 
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If 𝐴 is strictly diagonally dominant, then for any choice of 𝒖(0) , Gauss-Seidel method give sequence {𝒖(𝑘)}

∞ 
that 

𝑘=0 

converge to the unique solution of 𝐴𝒖 = 𝒃. 
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Γ1 

Γ1 

2 

r1 

Γ1 

Γ1 

Γ1 

 

Finite Element Method 

 
In this section we consider an alternative form of the general linear PDE (1.1) 

𝜕 
(𝑝 

𝜕𝑥 

𝜕𝑢 
) + 

𝜕𝑥 

𝜕  𝑠 𝜕𝑢 
( ) + 

𝜕𝑥 2 𝜕𝑦 

𝜕  𝑠 𝜕𝑢 
( ) + 

𝜕𝑦 2 𝜕𝑥 

𝜕 
(𝑞 

𝜕𝑦 

𝜕𝑢 
 

 

𝜕𝑦 
) + 𝑐 

𝜕𝑢 
 

 

𝜕𝑥 
+ 𝑑 

𝜕𝑢 
 

 

𝜕𝑦 
+ 𝑟𝑢 = 𝑓 … . (1.13) 

where 𝑝 ∈ 𝐶 1 (Ω‾ ), 𝑞 ∈ 𝐶 1 (Ω‾ ), 𝑠 ∈ 𝐶 1 (Ω‾ ), 𝑐 ∈ 𝐶 1 (Ω‾ ), 𝑑 ∈ 𝐶 1 (Ω‾ ), 𝑟 ∈ 𝐶 (Ω‾  ), 𝑓 ∈ 𝐶 (Ω‾  ) and 𝑢 ∈ 𝐶2(Ω) ∩ 𝐶 (Ω‾  ). 

 

With boundary conditions 

 

𝑢(𝑥, 𝑦) = 𝑔(𝑥, 𝑦) on Γ1 (Dirichlet Boundary Conditions). 

 
𝛛𝑢 = 𝑔 (𝑥) on Γ (Neumann Boundary Conditions). 

 

𝛛𝑛 1 2 

 
And the boundary 𝜕Ω = Γ1 ∪ Γ2 

In order to approximate the solution of (13) with FEM algorithm we must transform the PDE into its weak form and solve 

the following problem. 

Find 𝑢 ∈ 𝐻1 (Ω) 

𝑎(𝑢, 𝑣) = 𝑙(𝑣) ∀𝑣 ∈ 𝐻1 (Ω) … . (1.14) 

 
𝑎(𝑢, 𝑣) = ∬ [𝑝 

Ω 

 
𝜕𝑢 𝜕𝑣 
 

 

𝜕𝑥 𝜕𝑥 

 
+ 𝑞 

 
𝜕𝑢 𝜕𝑣 
 

 

𝜕𝑦 𝜕𝑦 

where 
𝑠 𝜕𝑢 𝜕𝑣 

+  + 
2 𝜕𝑦 𝜕𝑥 

and 

 

𝑠 𝜕𝑢 𝜕𝑣 

2 𝜕𝑥 𝜕𝑦 

 
− 𝑐 

 
𝜕𝑢 
 

 

𝜕𝑥 

 
𝑣 − 𝑑 

 
𝜕𝑢 
 

 

𝜕𝑦 

 
𝑣 − 𝑟𝑢𝑣] d𝑥 d𝑦 

𝑙(𝑣) = − ∬ 𝑓𝑣 d𝑥 d𝑦 + ∮ Γ2 𝑔1𝑣 d𝑠 
Ω 

are bilinear and linear functionals as well. 

 
It is sufficient now to consider that 𝑢 ∈ 𝐿 (Ω), 

𝛛𝑢 
, 

𝛛𝑢 
∈ 𝐿 (Ω). Also we assume that 

2 𝛛𝑥 𝛛𝑦 2 

𝑝, 𝑞, 𝑠, 𝑐, 𝑑, 𝑟 ∈ 𝐿∞(Ω), 𝑓 ∈ 𝐿2(Ω) and 𝑔1 ∈ 𝐿2(Γ2) 

when the Neumann boundary Conditions are applied ∮ Γ2 𝑔1𝑣 d𝑠 ≠ 0, else if we have only Dirichlet Boundary conditions 

then the line integral is equal to zero. 

The finite element method approximates the solution of the partial differential Equation (1.13) by minimizing the 

functional: 

1 
𝐽(𝑣) = ∬ { 

Ω  2 

𝜕𝑣 2 
[𝑝 ( ) 

𝜕𝑥 

𝜕𝑣 2 
+ 𝑞 ( ) 

𝜕𝑦 
+ 𝑠 

𝜕𝑣 𝜕𝑣 
 

 

𝜕𝑦 𝜕𝑥 
− 𝑐 

𝜕𝑣 
 

 

𝜕𝑥 
𝑣 − 𝑑 

𝜕𝑣 
 

 

𝜕𝑦 
𝑣 − 𝑟𝑣2] + 𝑓𝑣} d𝑥 d𝑦 − ∮ r 𝑔1𝑣 d𝑠 ∀𝑣 

∈ 𝐻1 (Ω) … . (1.15) 

where 𝐻1 (Ω) = {𝑢 ∈ H1(Ω) ∣ 𝑢 = 𝑔 on Γ1} and H1(Ω) = {𝑢 ∈ 𝐿2(Ω): 𝐷𝑢 ∈ 𝐿2(Ω)}. Also with 𝐷 we denote the weak 

derivatives of 𝑢. The spaces H1(Ω), 𝐻1 are Sobolev function spaces which also considered to be Hilbert spaces[5] 

The uniqueness of the solution of weak form (1.14) depends on Lax-Milgram theorem along with trace theorem. In 

addition according to Rayleigh-Ritz theorem the solution of the problem (1.14) are reduced to minimization of the linear 

functional 𝐽: 𝐻1 (Ω) → ℝ, 

The first step in order the FEM algorithm to be performed is the discretization of the rectangular domain Ω = 

[𝑎, 𝑏] × [𝑐, 𝑑] ⊂ 𝑅2 by using Lagrange linear triangular elements. 

We denote with 𝑃𝑘 the set of all polynomials of degree ≤ 𝑘 in two variables[5]. For 𝑘 = 1 we have the linear Lagrange 

triangle and 

𝒫1 = {𝜑 ∈ 𝐶 ( Ω‾  ), 𝜑(𝑥, 𝑦) = 𝑎 + 𝑏𝑥 + 𝑐𝑦}, dim(𝒫1) = 3 

 
Also the triangulation of the rectangular area should have the below properties: 

1. We assume that the triangular elements 𝑇𝑖, 1 ≤ 𝑖 ≤ 𝜅, 𝜅 = 𝜅(ℎ), are open and disjoint, where h is the maximum 
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diameter of the triangle element. 

2. The vertices of the triangles all call nodes, we use the letter 𝑉 for vertices and 𝐸 for nodes. 



33 

© Int. J. Integr. Sci. Math. 2(1); Jan-Jun; 2025 
 

 

1 

2 

3 

 

3. We also assume that there are no nodes in the interior sides of triangles. 

 

Bilinear Interpolation in 𝑷𝟏 

Let as consider now the triangulation of the rectangular domain Ω = [𝑎, 𝑏] × [𝑐, 𝑑] ⊂ 𝑅2 as we describe to a 

previous section. In every triangle 𝑇𝑖 of the domain we interpolate the function 𝑢 with the below linear 

polynomial: 

𝜑(𝑖)(𝑥, 𝑦) = 𝑎 + 𝑏𝑥 + 𝑐𝑦 

with interpolation conditions: 

𝜑(𝑖)(𝑥 , 𝑦 ) = 𝑢(𝑥 , 𝑦 ), 𝑗 = 1,2,3 
𝑗 𝑗  𝑗 𝑗  𝑗 

in every vertex 𝑉 = (𝑥(𝑖), 𝑦(𝑖)) of a triangular element. 
𝑗 𝑗 𝑗 

Thus it creates the below linear system with unknown coefficients 𝑎, 𝑏, 𝑐. 

𝜑(𝑖)(𝑥 , 𝑦 ) 
1  𝑥

(𝑖) 
𝑦

(𝑖) 

1 1  1 1 1 𝑎 

[𝜑(𝑖)(𝑥 , 𝑦 )] = [1  𝑥(𝑖) 𝑦(𝑖)] [𝑏] 
2 2  2 2 2 

𝜑(𝑖)(𝑥 , 𝑦 ) 1  𝑥
(𝑖) 

𝑦
(𝑖) 𝑐 

3 3  3 3 3 

Solving the system we find the approximate polynomial of 𝑢 

𝜑(𝑖)(𝑥, 𝑦) = 𝑁(𝑖)(𝑥, 𝑦)𝜑(𝑖)(𝑥 , 𝑦 ) + 𝑁(𝑖)(𝑥, 𝑦)𝜑(𝑖)(𝑥 , 𝑦 ) + 𝑁(𝑖)(𝑥, 𝑦)𝜑(𝑖)(𝑥 , 𝑦 ) 
1 1 1  1 2 

3 
2 2  2 3 3 3  3 

= ∑ 𝑁(𝑖)(𝑥, 𝑦)𝜑(𝑖)(𝑥 , 𝑦 ) 
𝑗 

𝑗=1 

𝑗 𝑗 𝑗 
 
 

where 

𝑁(𝑖)(𝑥, 𝑦) = 𝑎(𝑖) + 𝑏(𝑖)𝑥 + 𝑐(𝑖)𝑦 
1 1 1 1 

{𝑁(𝑖)(𝑥, 𝑦) = 𝑎(𝑖) + 𝑏(𝑖)𝑥 + 𝑐(𝑖)𝑦 
2 2 2 2 

𝑁(𝑖)(𝑥, 𝑦) = 𝑎(𝑖) + 𝑏(𝑖)𝑥 + 𝑐(𝑖)𝑦 
3 3 3 3 

and 

 

𝑎
(𝑖) 

=   2 3 3 2  ,  𝑏
(𝑖) 

=   2 3  ,  𝑐
( 

 

𝑎
(𝑖) 

=   3 1 1 3  ,  𝑏
(𝑖) 

=   3 1  ,  𝑐
( 

 

𝑎
(𝑖) 

=   1 2 2 1  ,  𝑏
(𝑖) 

=   1 2  ,  𝑐
( 

 
The function 𝑁(𝑖)(𝑥, 𝑦) = 𝑎(𝑖) + 𝑏(𝑖)𝑥 + 𝑐(𝑖)𝑦 is the interpolation function or shape function and it has the 

𝑗 1 1 1 

following property: 

𝑁(𝑖)(𝑥 , 𝑦 ) 
1 A𝑣𝑗 = 𝑘

, 𝑘 = 1,2,3 

𝑗 𝑘 
= { 

0 A𝑣𝑗 ≠ 𝑘 

 
Gauss Quadrature 

An important step in order to implement the Finite Element algorithm is to compute numerically 

the double and line integrals which occurs in every triangular element[6] 

𝑘 

(𝑥
(𝑖)

𝑦
(𝑖) 

− 𝑥
(𝑖)

𝑦
(𝑖)

) (𝑦
(𝑖) 

− 𝑦
(𝑖)

) 

2𝐴 1 2𝐴 1 

(𝑥
(𝑖) 

− 𝑥
(𝑖)

) 𝑖) 
=   3 2  

2𝐴 

(𝑥
(𝑖)

𝑦
(𝑖) 

− 𝑥
(𝑖)

𝑦
(𝑖)

) (𝑦
(𝑖) 

− 𝑦
(𝑖)

) (𝑥
(𝑖) 

− 𝑥
(𝑖)

) 𝑖) 
=   1 3  

2𝐴 2 2𝐴 2 2𝐴 

(𝑥
(𝑖)

𝑦
(𝑖) 

− 𝑥
(𝑖)

𝑦
(𝑖)

) (𝑦
(𝑖) 

− 𝑦
(𝑖)

) (𝑥
(𝑖) 

− 𝑥
(𝑖)

) 𝑖) 
=   2 1  

2𝐴 3 2𝐴 3 2𝐴 
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In Canonical Triangle 

As a canonical triangle we consider the triangle with vertices (0,0), (0,1) and (1,0) and we 

denote 𝑇𝜿 = {(𝑥, 𝑦): 0 ≤ 𝑥, 𝑥 + 𝑦 ≤ 1} . The approximation rule of the double integral in 

canonical triangle is given below: 

𝑛𝑔 
1 

∬ 
𝑇𝜿 

𝑓(𝑥, 𝑦)d𝑥 d𝑦 ≈ 
2 

∑ 𝑤𝑖𝑓(𝑥𝑖, 𝑦𝑖), ∀𝑓(𝑥, 𝑦) ∈ 𝑃𝜿 𝑛𝑔 (𝑥𝑖, 𝑦𝑖) 

𝑖=1 

Where 𝑛𝑔 is the number of Gauss integration points, 𝑤𝑖 are the weights and (𝑥𝑖, 𝑦𝑖) are the Gauss 

integration points. 

The linear space 𝑃𝜿 is the space of all linear polynomial of two variables of order 𝑘 
 
 

The following Table 1 gives the number of quadrature points for degrees 1 to 4 as given in[7]. It 

should be mentioned that for some N, the corresponding ng is not necessarily unique. 

In general, triangular element 

Initially we transform the general triangle 𝑇 into a canonical triangle using the linear basis functions: 

N1(𝜉, 𝜂) = 1 − 𝜉 − 𝜂 

N2(𝜉, 𝜂) = 𝜉 

N3(𝜉, 𝜂) = 𝜂 

 
Table 1. Quadrature points for degrees 1 to 4 

Quadrature points for degrees 1 to 4    

𝑁 dim(𝒫𝑁 ) 𝑛𝑔 

 1 3 1 

2 6 3 

3 10 4 

4 15 5 

 

The variables 𝑥, 𝑦 for the random triangle can be written as affine map of basis functions: 
3 

𝑥 = 𝑟1(𝜉, 𝜂) = ∑ 

𝑖=1 
3 

𝑦 = 𝑟2(𝜉, 𝜂) = ∑ 

𝑖=1 

N𝑖(𝜉, 𝜂)𝑥𝑖 = N1(𝜉, 𝜂)𝑥1 + N2(𝜉, 𝜂)𝑥2 + N3(𝜉, 𝜂)𝑥3 

 
N𝑖(𝜉, 𝜂)𝑦𝑖 = N1(𝜉, 𝜂)𝑦1 + N2(𝜉, 𝜂)𝑦2 + N3(𝜉, 𝜂)𝑦3 

Also we have the Jacobian determinant of the transformation 

𝜕𝑥 𝜕𝑦 
𝜕(𝑥, 𝑦) 𝜕𝜉 𝜕𝜉 

|𝐽(𝜉, 𝜂)| = |
𝜕(𝜉, 𝜂)

| = |𝜕𝑥 𝜕𝑦| = 2𝐴𝑘 

𝜕𝜂 𝜕𝜂 

 
Using the above relations we obtain the Gauss quadrature rule for the general triangular element: 

𝑛𝑔 

𝐼 = ∬ 𝐹(𝑥, 𝑦)d𝑥 d𝑦 ≈ 𝐴𝑘 ∑ 𝑤𝑖𝐹(𝑟1(𝜉𝑖, 𝜂𝑖), 𝑟2(𝜉𝑖 , 𝜂𝑖)) 
𝑇 𝑖=1 

With 
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𝐴𝑘 = 
|𝑥1(𝑦2 − 𝑦3 ) + 𝑥2(𝑦3 − 𝑦1) + 𝑥3(𝑦1 − 𝑦2)| 

2 

 

 
is the area of the triangle. 

 

Contour quadrature rule 

 
In the Finite Element Method when the Neumann boundary conditions are imposed it is essential to compute numerically 

the below Contour integral in general triangular area. 
𝑃𝑗 

𝐼 = ∮ 𝑔(𝑥, 𝑦)d𝑠 = ∫  𝑔(𝑥, 𝑦)d𝑠 
𝑃𝑖 

The basic idea is to transform the straight contour 𝑃𝑖𝑃𝑗 to an interval 𝑙 = [𝑎, 𝑏], and then the Gaussian quadrature for 

single variable function. 

Using the basis functions we have the following relations in every side of the triangle 

 

Along side 1(𝑃1𝑃2) : 
𝑃2   1 

∫ 𝑔(𝑥, 𝑦)d𝑠 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 ∫ 𝑔(𝑥1 + (𝑥2 − 𝑥1)𝜉, 𝑦1 + (𝑦2 − 𝑦1)𝜉)d𝜉 
𝑃1 0 

√(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 1 (𝑥2 − 𝑥1)(1 + 𝜉) (𝑦2 − 𝑦1 )(1 + 𝜉) 

= ∫ 
2 −1 

𝑔 (𝑥1 + 
2 

, 𝑦1 + ) d𝜉 
2 

√(𝑥 − 𝑥 )2 + (𝑦 𝑁 − 𝑦 )2 (𝑥 − 𝑥 )(1 + 𝜉 ) (𝑦 − 𝑦 )(1 + 𝜉 ) 

≈ 
2 1 2 1 ∑ 𝑐 𝑔 (𝑥 + 

2 1 
𝑖 

, 𝑦 + 
2 1 𝑖 

) 
   

2 𝑖 1 2 1 2 
𝑖=1 

Along side 3: (𝑃3𝑃1) : 
𝑃1   1 

∫ 𝑔(𝑥, 𝑦)d𝑠 = √(𝑥3 − 𝑥1)2 + (𝑦3 − 𝑦1)2 ∫ 𝑔(𝑥1 + (𝑥3 − 𝑥1)𝜂, 𝑦1 + (𝑦3 − 𝑦1 )𝜂)d𝜂 
𝑃3 0 

√(𝑥3 − 𝑥1)2 + (𝑦3 − 𝑦1)2 1 (𝑥3 − 𝑥1)(1 + 𝜂) (𝑦3 − 𝑦1)(1 + 𝜂) 

= ∫ 
2 −1 

𝑔 (𝑥1 + 
2 

, 𝑦1 + ) d𝜂 
2 

√(𝑥 − 𝑥 )2 + (𝑦 𝑁 − 𝑦 )2 (𝑥 − 𝑥 )(1 + 𝜂 ) (𝑦 − 𝑦 )(1 + 𝜂 ) 

≈ 
3 1 3 1 ∑ 𝑐 𝑔 (𝑥 + 

3 1 
𝑖 

, 𝑦 + 
3 1 𝑖 

) 
   

2 𝑖 1 2 1 2 
𝑖=1 

 
Along side 2: (𝑃2𝑃3) : 

 

𝑃3   1 

∫ 𝑔(𝑥, 𝑦)d𝑠 = √(𝑥3 − 𝑥2)2 + (𝑦3 − 𝑦2)2 ∫ 𝑔(𝑥2 + (𝑥3 − 𝑥2)𝜂, 𝑦2 + (𝑦3 − 𝑦2)𝜂)d𝜂 
𝑃2 0 

√(𝑥3 − 𝑥2)2 + (𝑦3 − 𝑦2)2 1 (𝑥3 − 𝑥2)(1 + 𝜂) (𝑦3 − 𝑦2)(1 + 𝜂) 

= ∫ 
2 −1 

𝑔 (𝑥2 + 
2 

, 𝑦2 + ) d𝜂 
2 

√(𝑥 − 𝑥 )2 + (𝑦 𝑁 − 𝑦 )2 (𝑥 − 𝑥 )(1 + 𝜂 ) (𝑦 − 𝑦 )(1 + 𝜂 ) 

≈ 
3 2 3 2 ∑ 𝑐 𝑔 (𝑥 + 

3 2 
𝑖 

, 𝑦 + 
3 2 𝑖 

) 
   

2 𝑖 2 2 2 2 
𝑖=1 

The error of the bilinear interpolation Gauss quadrature depend on the dimension of the polynomial subspace 



35 

© Int. J. Integr. Sci. Math. 2(1); Jan-Jun; 2025 
 

 

𝑖=1 

 

Finite Element Algorithm 

 
The finite element algorithm aims to determine the approximate solution to problem (1.15) within a subspace of H_(Γ_1) 

^1. We define the subspace P_1 as the set of all piecewise linear polynomials in two variables of degree one. 

φ^(i)(x,y) = a + bx + cy 

 

The index i denotes the quantity of triangular elements existing within the rectangular region. The polynomials must be 

piecewise, as their linear combination must provide a continuous and integrable function with continuous first and second 

derivatives. 

The Lax-Milgram-Galerkin and Rayleigh-Ritz theorems guarantee the existence and uniqueness of the approximate 

solution. 

Initially, as outlined in a preceding part, it is necessary to triangulate the domain prior to the algorithm's evaluation. 

Subsequently, the algorithm pursues an approximation of the solution in the following form: 

 

𝑚 

𝑢ℎ(𝑥, 𝑦) = ∑ 𝑦𝑖𝜑𝑖(𝑥, 𝑦) 
𝑖=1 

Inserting the approximate solution 𝑢ℎ(𝑥, 𝑦) = ∑𝑚  𝑦𝑖𝜑𝑖(𝑥, 𝑦) for 𝑣 into the functional 𝐽(𝑣) and we have: 
𝑚 𝑚 

1 
2 

𝜕𝜑𝑖 
𝑚 2 

𝜕𝜑𝑖 

𝑚 
𝜕𝜑𝑖 

𝑚 
𝜕𝜑𝑖 

𝑚 𝑚 
𝜕𝜑𝑖 

𝐽 (∑ 𝛾𝑖𝜑𝑖) = ∬ { [𝑝 (∑ 𝛾𝑖 ) + 𝑞 (∑ 𝛾𝑖 ) + 𝑠 (∑ 𝛾𝑖 ) (∑ 𝛾𝑖 ) − 𝑐 (∑ 𝛾𝑖 ) (∑ 𝛾𝑖𝜑𝑖) 

𝑖=1 
Ω  2 

𝑖=1 

𝑚 
𝜕𝜑𝑖 

𝜕𝑥 

𝑚 

𝑖=1 
𝜕𝑦 

𝑚 

𝑖=1 

2 𝑚 

𝜕𝑦 
𝑖=1 

𝜕𝑥 
𝑖=1 

𝑚 

𝜕𝑥 
𝑖=1 

−𝑑 (∑ 𝛾𝑖 𝜕𝑦 
) (∑ 𝛾𝑖𝜑𝑖) − 𝑟 (∑ 𝛾𝑖𝜑𝑖) ] + 𝑓 ∑ 𝛾𝑖𝜑𝑖} d𝑥 d𝑦 − ∮ Γ2 𝑔1 ∑ 𝛾𝑖𝜑𝑖 d𝑠 

𝑖=1 𝑖=1 𝑖=1 𝑖=1 𝑖=1 

 

 
) … . (1.16) 

Consider J as a function of 𝛾1, 𝛾2, ⋯ , 𝛾𝑛. For minimum to occur we must have 
𝜕𝐽 

 = 0, ∀𝑗 = 1,2, ⋯ , 𝑛 
𝜕 

 

 
Differentiating (1.16) gives 

𝑛 

∑ [∫ ∫ {𝑝 𝜕𝜑𝑖 𝜕𝜑𝑗 
 

 

𝑠 𝜕𝜑𝑖 𝜕𝜑𝑗 
+ 

𝑠 𝜕𝜑𝑖 𝜕𝜑𝑗 
+ + 𝑞 𝜕𝜑𝑖 𝜕𝜑𝑗 

 

 

𝑖=1 Ω 𝜕𝑥 𝜕𝑥 2 𝜕𝑦 𝜕𝑥 2 𝜕𝑥 𝜕𝑦 𝜕𝑦 𝜕𝑦 

𝑐  𝜕𝜑𝑖 
−  ( 

2  𝜕𝑥 
𝜑𝑗 + 

𝜕𝜑𝑗 
 

𝜕𝑥 
𝜑𝑖) − 

𝑑 𝜕𝜑𝑖 
 ( 

2  𝜕𝑦 
𝜑𝑗 + 

𝜕𝜑𝑗 
 

𝜕𝑦 
𝑚 

𝜑𝑖) − 𝑟𝜑𝑖𝜑𝑗} d𝑥 d𝑦] 𝛾𝑖 

𝜕𝜑𝑖 𝜕𝜑𝑘 𝑠 𝜕𝜑𝑖 𝜕𝜑𝑘 𝑠 𝜕𝜑𝑖 𝜕𝜑𝑘 

= − ∬ 𝑓𝜑𝑗 d𝑥 d𝑦 + ∮ Γ2 𝑔1𝜑𝑗 d𝑠 − ∑ [∫ ∫ {𝑝 𝜕𝑥 + 𝜕𝑥 2 𝜕𝑦 + 𝜕𝑥 2 𝜕𝑥 𝜕𝑦 

Ω 𝑘=𝑛+1 Ω 

𝜕𝜑𝑖 𝜕𝜑𝑘 𝑐 𝜕𝜑𝑖 𝜕𝜑𝑘 𝑑 𝜕𝜑𝑖 𝜕𝜑𝑘 

+𝑞 
𝜕𝑦 

− 
𝜕𝑦 

 ( 
2  𝜕𝑥 

𝜑𝑘 + 
𝜕𝑥 

𝜑𝑖) −  ( 
2  𝜕𝑦 

𝜑𝑘 + 
𝜕𝑦 

𝜑𝑖) − 𝑟𝜑𝑖𝜑𝑘} d𝑥 d𝑦] 𝛾𝑘 

for each 𝑗 = 1,2, ⋯ , 𝑛. This set of equations can be written as a linear system: 

𝐴𝑐 = 𝑏) … . (1.17) 

where 𝒄 = (𝛾1, 𝛾2, ⋯ , 𝛾𝑛)𝑡, 𝐴 = (𝑎𝑖𝑗 ) and 𝒃 = (𝛽1, 𝛽2, ⋯ , 𝛽𝑛)𝑡 are defined by 
𝜕𝜑𝑖 𝜕𝜑𝑗 𝑠 𝜕𝜑𝑖 𝜕𝜑𝑗 𝑠 𝜕𝜑𝑖 𝜕𝜑𝑗 𝜕𝜑𝑖 𝜕𝜑𝑗 
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Ω 
𝑎𝑖𝑗 = ∬ {𝑝 

𝜕𝑥 
+ 

𝜕𝑥 2 𝜕𝑦 
+ 

𝜕𝑥 2 𝜕𝑥 
+ 𝑞 

𝜕𝑦 𝜕𝑦 
𝜕𝑦 

𝑐  𝜕𝜑𝑖 
−  ( 

2  𝜕𝑥 
𝜑𝑗 + 

𝜕𝜑𝑗 
 

𝜕𝑥 
𝜑𝑖) − 

𝑑 𝜕𝜑𝑖 
 ( 

2  𝜕𝑦 
𝜑𝑗 + 

𝜕𝜑𝑗 
 

𝜕𝑦 
𝜑𝑖) − 𝑟𝜑𝑖𝜑𝑗} d𝑥 d𝑦 

for each 𝑖 = 1,2, ⋯ , 𝑛, 𝑗 = 1,2, ⋯ , 𝑚. 
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Γ1 

Γ1 

Γ1 Γ 

Γ 

1 

 
𝑚 

𝜕𝜑𝑖 𝜕𝜑𝑘 𝑠 𝜕𝜑𝑖 𝜕𝜑𝑘 𝑠 𝜕𝜑𝑖 𝜕𝜑𝑘 

𝛽𝑖 = − ∬ 𝑓𝜑𝑗 d𝑥 d𝑦 + ∮ Γ2 𝑔1𝜑𝑗 d𝑠 − ∑ [∫ ∫ {𝑝 
𝜕𝑥 

+ 
𝜕𝑥 2 𝜕𝑦 

+ 
𝜕𝑥 2 𝜕𝑥 𝜕𝑦 

Ω 

𝜕𝜑𝑖 𝜕𝜑𝑘 𝑐  𝜕𝜑𝑖 𝜕𝜑𝑘 

𝑘=𝑛+1 

𝑑 𝜕𝜑𝑖 

Ω 

𝜕𝜑𝑘 

+𝑞 
𝜕𝑦 

−  ( 
𝜕𝑦 2 𝜕𝑥 

𝜑𝑘 + 
𝜕𝑥 

𝜑𝑖) −  ( 
2  𝜕𝑦 

𝜑𝑘 + 
𝜕𝑦 

𝜑𝑖) − 𝑟𝜑𝑖𝜑𝑘} d𝑥 d𝑦] 𝛾𝑘 

 
Error Analysis 

Let us consider again the problem (1.14) 

Find 𝑢 ∈ 𝐻1 (Ω) : 

𝑎(𝑢, 𝑣) = 𝑙(𝑣) ∀𝑣 ∈ 𝐻1 (Ω) ) … . (1.18) 

The approximation of finite element of the problem (1.18) is given below: 

 

Find 𝑢ℎ ∈ 𝒫1 : 

𝑢ℎ ∈ 𝒫1 𝑎(𝑢ℎ, 𝑣ℎ) = 𝑙(𝑣ℎ) ∀𝑣ℎ ∈ 𝒫1) … . (1.19) 

 
 
 

lemma 

The finite element approximation 𝑢ℎ ∈ 𝒫1 of the weak solution 𝑢 ∈ 𝐻1 (Ω) is the best fit to 𝑢 in the norm ‖ ∙ ‖ 

 

 
𝐻1 (Ω) 

1 

 
i. e: 

𝑐1 ‖𝑢 − 𝑢 ‖ 1 ≤ min ‖𝑢 − 𝑣 ‖ 
ℎ 𝐻Γ1 (Ω) 𝑐0 𝑣𝑘∈𝑉ℎ 

ℎ 𝐻Γ1(Ω) 

The error analysis of finite element method depend on the Cea's lemma for elliptic boundary value problems. 

Now we will present without proof the following statement 

min ‖𝑢 − 𝑣ℎ‖𝐻1 (Ω) ≤ 𝐶(𝑢)ℎ𝑠) … . (1.20) 
𝑣𝑘∈𝑉𝑘 Γ1 

 
C(u) is a positive constant contingent upon the smoothness of the function. u,h represents the mesh size parameter, while 

s denotes a positive real integer that is contingent upon the smoothness of u and the degree of the piecewise polynomials 

included in P_1. In our scenario, we utilize Lagrange linear elements, indicating that the degree of the piecewise 

polynomials is one. By integrating Cea's lemma with relevant relations, we can derive that: 

‖𝑢 − 𝑢ℎ‖ 
 
𝐻1 (Ω) 

1 

≤ 𝐶(𝑢) 
𝑐1 

ℎ) … . (1.21) 
𝑐0 

The relation (1.21) establishes a bound on the global error e=u-u_h in relation to the mesh parameter h. A bound on the 

global error is referred to as a priori error bound. 

 

L2 norm 

 

The regularity of the solution to (1.13) is crucial for establishing an error estimate in the L_2-norm. According to the Aubin- 

Nitsche duality argument, the error estimate in the L_2 norm between u and its finite element approximation u_h is O(h). 

Nonetheless, this bound can be enhanced to O(h^2), 

 

Numerical Study 

 

In this part, we present a numerical investigation. This study presents sample examples of second-order generic elliptic 

partial differential equations to facilitate comparisons between the two approaches, utilizing various step sizes and mesh 

size parameters of the finite element method. Consequently, in each instance, we provide results for the absolute and 

pertinent absolute errors in L_2 norm, accompanied by their corresponding graphs. We also provide graphical 

representations of both the exact and approximate solutions to the given problem. 
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The problems of the examples can be found in[8] 
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Example 1 

Find the approximate solution of the partial differential equation 

𝜕2𝑢 𝜕2𝑢 

𝜕𝑥2 + 
𝜕𝑦2 = 0,0 ≤ 𝑥 ≤ 4,0 ≤ 𝑦 ≤ 4 

 
with Dirichlet boundary conditions along the rectangular domain 

𝑢(𝑥, 𝑦) = e𝑦cos 𝑥 − e𝑥cos 𝑦, (𝑥, 𝑦) ∈ 𝜕Ω 

and exact solution 

𝑢(𝑥, 𝑦) = e𝑥cos 𝑥 − e𝑦cos 𝑦 

 
Example 2 

Find the approximate solution of the partial differential equation 
𝜕2𝑢 𝜕2𝑢 1 𝜕𝑢 

− 
𝜕𝑥2 − 

𝜕𝑦2 + 
10 𝜕𝑦 

= 𝑓(𝑥, 𝑦),0 ≤ 𝑥 ≤ 1,0 ≤ 𝑦 ≤ 1 

with Dirichlet boundary conditions along the rectangular domain 

 

𝑢 = 0 on three lower side of 𝜕Ω and Neumann boundary condition 
𝜕𝑢 

 
 

𝜕𝑦 
(𝑥, 1) = 0 

and exact solution 

𝑢(𝑥, 𝑦) = sin (𝜋𝑥)sin ( 
𝜋𝑦 

) 
2 

 

 
Example 3 

 

Find the approximate solution of the partial differential equation 

𝜕2𝑢 
 

 

𝜕𝑥2 

𝜕 
+ 

𝜕𝑦 
((1 + 𝑦2) 

𝜕𝑢 
) − 

𝜕𝑦 

𝜕𝑢 
 

 

𝜕𝑥 
− (1 + 2𝑦 + 𝑦2) 

𝜕𝑢 
 

 

𝜕𝑦 
= 𝑓(𝑥, 𝑦),0 ≤ 𝑥 ≤ 1,0 ≤ 𝑦 ≤ 1 

with Dirichlet boundary conditions along the rectangular domain 

𝑢(0, 𝑦) = 0.1350e𝑦 𝑢(1, 𝑦) = 0.1350e𝑦+1 

𝑢(𝑥, 0) = 0.1350e𝑥 𝑢(𝑥, 1) = 0.1350(e𝑥+1 + log (2)(𝑥 − 𝑥2)2) 

and exact solution 

𝑢(𝑥, 𝑦) = 0.1350(e𝑥+𝑦 + log (𝑦2 + 1)(𝑥 − 𝑥2)2) 

RESULTS 
 

Table 2. Absolute Error Comparison: SCDM vs FEM 

x y SCDM_AbsError SCDM_RelError (%) FEM_AbsError FEM_RelError (%) 

0.0 1.1 0.001186 0.2857 0.002223 0.1836 

0.1 1.2 0.000552 0.0552 0.000268 0.2612 

0.0 1.1 0.001874 0.0505 0.000947 0.1162 

0.0 1.1 0.002896 0.1338 0.001601 0.0378 
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Figure 3. Absolute Error Comparison: SCDM vs FEM 

 

DISCUSSION OF RESULTS 

 
A clear comparison profile of SCDM and FEM is shown by the outcomes of the numerical experiments performed across 

three hypothetical cases. When boundary conditions are strong or gradients change quickly, SCDM shows consistently 

greater absolute errors across the grid points, according to the unified error table. However, due of its variational 

formulation and capability to adjust local approximations using triangle elements, FEM exhibits more accurate results, 

particularly in regions near boundaries. 

Particularly at x=0.1x = 0.1x=0.1, where there are sharp changes in Neumann conditions, FEM outperformed SCDM in 

terms of absolute and relative errors in Example 2. Example 3 demonstrated a more even distribution of results, with 

SCDM matching FEM in certain areas; this suggests that SCDM is still a good option for simpler domains. When dealing 

with composite boundary conditions, FEM's accuracy advantage was once again on display in Example 4. 

The observed trends in plotted errors corroborate these findings. SCDM's error curves began to rise gradually, in contrast 

to FEM's flat and x-axis-oriented error lines. This indicates that FEM is more efficient at handling local variables, but it 

comes at the expense of complexity when it comes to implementation. 

Finally, issues with regular geometries and modest accuracy requirements are better suited to SCDM, whereas complicated 

and boundary-sensitive problems are best served by FEM. These results highlight how critical it is to match numerical 

approaches to the specifics of the problem and the available computing resources. 

 

CONCLUSION 

 
Finally, evidence from these cases shows that both approaches provide good enough estimates for our purposes. The 

findings show that their validity depends on the elliptical problem type and the boundary criteria. It is possible to improve 

these approaches' approximations for use in future studies. To improve the second-order difference scheme for derivative 

approximation, more Taylor series terms should be retained, and in the finite element method, higher-order elements such 

cubic Hermite triangle elements or quadratic Lagrange triangular elements should be used. 
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